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The self-dual Yang-Mills equations in four dimensions are integrable, for any gauge 
group, via the twistor transform. Integrability of the Yang-Mills equations proper in 
four dimensions with a finite dimensional gauge group cannot reasonably be hoped for. 
However, longstanding questions about the large N limit of QCD suggest that a new form 
of integrability might conceivably emerge in the limit of an infinite dimensional gauge 
group. 
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The twistor transform, which Roger Penrose introduced and whose whole 
development he has so influenced, lies at the heart of many mysteries. It 
exhibits the self-dual Einstein [1] and Yang-Mills [2] equations as what one 
might roughly call integrable equations. These (and some analogs discovered by 
twistor methods) are the only known nonlinear equations in four dimensions 
that might reasonably deserve that name. Twistorial investigations of these 
equations, and their various offspring and dimensional reductions, have paid 
recurrent dividends that show no sign of diminishing. 

The twistor explanation of integrability of the self-dual equations is so 
incisive that it might well be regarded as the model of what an explanation 
of integrability should be. To appreciate the significance of this, note that 
various kinds of integrable models, which at first sight might look like exotica, 
play a key role in a startling range of problems. In recent years, integrable 
systems have been used, for instance, to construct invariants of knots and 
three manifolds, to describe the geometry of the moduli space of Riemann 
surfaces, and to construct classical solutions of string theory - j u s t  to mention 
a few problems that are more or less related. Deeper study of some of these 
problems may well lead back to twistor theory and the self-dual equations in 
four dimensions. 
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Further progress in twistor theory is bound to involve making contact with 
developments in more conventional quantum field theory. I would like to 
offer a few reflections about a possible area of future contact between twistor 
theory and conventional quantum field theory. In doing so, I decided to focus 
on an important problem that is not already known to be connected with 
integrability but where there is reason to suspect that such a connection might 
be possible. The problem in question has not been much considered in the 
light of twistor theory, though I myself have tried to do so to some extent. I 
do not have much to say that is really new, but I hope that these reflections 
will be of some interest. 

Integrability in Yang-Mills theory 

Much interest in twistor theory has focussed on trying to find an analog of 
the twistor construction for the full-fledged Einstein and Yang-Mills equations 
(not their self-dual versions). At least in the Yang-Mills case, there is indeed 
an interpretation of the equations as integrability equations, roughly, on slightly 
thickened light-like lines [3, 4]. This then leads to a correspondence between 
solutions of the Yang-Mills equations and holomorphic vector bundles on a 
suitable space of thickened null lines. 

This non-self-dual construction was found by imitating the twistor transform 
of the self-dual Yang-Mills equations, and incorporates some of the geometrical 
ideas of the latter. In particular, it incorporates Penrose's lovely idea of 
transforming local differential geometric data into global complex analytic 
data. On the other hand, the non-self-dual construction certainly lacks much 
of the beauty and power of the original twistor transform. 

This in itself should come as no surprise. The twistor transform of the 
self-dual Yang-Mills equations exhibits their integrability, but there is every 
reason to expect, even without any calculation, that the Yang-Mills equations 
proper will not be integrable in four dimensions. Integrable models in four 
dimensions are highly constrained, for instance to have trivial scattering data 
[5]. (This is usually formulated as a quantum statement, but the arguments, 
modulo technicalities that I think are inessential, also apply classically.) The 
phenomena described by the four dimensional Yang-Mills equations are far 
too complex to be described by an integrable system. 

What should we aim for instead? This question almost answers itself if one 
asks what integrability of the Yang-Mills equations would be good for i f -  
contrary to expectations - it were discovered. Such a discovery undoubtedly 
would be brought to bear on the longstanding problem of understanding QCD, 
the presumptive theory of strong interactions. 

The strong interactions are believed to be described by an SU(3) quantum 
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gauge theory in four dimensions. This theory has been extensively tested by 
numerous experiments that verify those of its predictions that follow either 
from global symmetries (spontaneously broken or not) or from asymptotic 
freedom. On the other hand, because of the strong coupling of QCD at 
large distances, much remains obscure; in particular, the predictions of the 
theory concerning particle masses, magnetic moments, etc., are out of  reach 
except in enormous Monte Carlo computer calculations. Such calculations are 
unsatisfying as a basis for understanding, but have given important further 
evidence that QCD is correct. At an even more fundamental level, the key 
theoretical mysteries of color confinement, dynamical mass generation, and 
spontaneous chiral symmetry breaking have been far out of reach of analytic 
understanding. 

If we would learn that the Yang-Mills equations were integrable classically, 
we would try (in the spirit of the quantum inverse scattering method in two 
dimensions [6] ) to find a corresponding integrability of QCD at the quantum 
level. 

This is impossible; the phenomena described by QCD are far too complex 
for QCD to be an integrable system. In particular, the S matrix of QCD is 
not 1. What can we hope for instead? 

Although QCD is not an integrable system with the usual S U(3) gauge 
group, 't Hooft showed long ago (see ref. [7]; I reviewed the arguments some 
years later [8] ) that, if one replaces the SU(3) gauge group by SU(N)  (and 
makes a few qualitative assumptions, like the assumption that color confine- 
ment persists), then in the limit of N ~ c~ QCD simplifies radically, becoming 
a weakly coupled theory in which the basic glueball coupling constant is of 
order I /N. If there is any way to understand QCD analytically, this must be 
it, since the key theoretical mysteries (color confinement, mass generation, 
chiral symmetry breaking, infinite hierarchy of hadron masses) that one wants 
to understand apparently all persist in this limit while the residual hadron in- 
teractions that otherwise ensure that the problem is intractable (unintegrable) 
disappear. Nature has a way of treating kindly physicists who find approxima- 
tion schemes that are qualitatively correct, and so there is a good chance that 
a solution of QCD for N ~ ~ would not only solve the theoretical mysteries 
but also give for added measure a good quantitative account of the hadron 

world. 
Unfortunately, the arguments that show that QCD becomes free for N --, c~ 

are far too crude to say anything else (beyond a few general relations that are 
pretty well obeyed in nature) about the limiting large N theory. In particular, 
one does not know anything about the masses, spins, and quantum numbers of 
the hadrons of the large N limit, much less how to compute the contributions 
of order I/N to their interactions. We have no idea whether the limited 
simplification found by 't Hooft is all of the simplification there is, or whether 
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it is just the tip of  the iceberg of an "integrability" that would really make the 
large N limit calculable. I put quotes around the word "integrability" because 
a precise and suitable definition of this term is hard to give, and some of the 
usual definitions might not apply here. What we are hoping is that there is 
a major, not obvious simplification of the large N limit of QCD, which will 
make it tractable, and which one might loosely describe as "integrability". 

I suppose that the main hint that this might be the case is that the 1/N 
expansion of QCD is organized by an expansion in Riemann surfaces, on 
which Feynman diagrams are drawn. This gives a striking analogy (already 
noted by 't Hooft) of  the I / N  expansion with string theory. 1/N plays the role 
of  the closed string coupling constant. Many physicists have suspected that 
the large N limit of QCD is integrable because it can be understood as some 
presently unknown kind of  string theory. Presently there is no way to know 
whether the analogy between string theory and the 1 /N  expansion of QCD 
is a frustrating accident or is a trace of something of  this kind. I personally 
doubt that the methods that have been brought to bear on the problem up to 
now are close to adequate, so we will probably be in the dark for some time. 

Thus, although classical Yang-Mills field theory cannot reasonably be an 
integrable system in four dimensions, nor can the quantum theory be integrable 
for a generic gauge group, it is entirely possible that in a suitable sense four 
dimensional Yang-Mills theory becomes integrable for N ~ c~. This is usually 
stated (along the lines of  the last paragraph) as something that might be true 
in the quantum theory, but I personally hope that if true at all it is true in a 
suitable sense also in the classical theory. If so, ideas of twistor theory, perhaps 
even the known twistor-like transform based on integrability on light-like lines, 
may well be relevant. 

If this optimistic scenario is valid, then to really achieve integrability, one 
presumably should set N = ~ in the classical theory. I do not know which 
version of S U ( ~ )  one should consider. However, for all of the reasons that 
I have tried to sketch, I think that if one wants to find more integrability 
in four dimensional gauge theories than is already known, the large N limit 
is the fight place to look. It is encouraging that Ward has shown [9] that 
the Nahm equations (one of the numerous integrable reductions of the self- 
dual Yang-Mills equations!) can be solved much more explicitly for certain 
infinite dimensional gauge groups than for finite dimensional ones. (Ward, 
following ref. [ 10], takes the gauge group to be the group of area preserving 
diffeomorphisms of  a two dimensional surface. It is not at all clear whether this 
is the right version of  SU(c~) for understanding the large N limit of QCD.) 
Also, the ADHM construction of instantons [ 11 ] seems to be much more 
tractable for N ~ c~ than for any finite N. (For any given N, and sufficiently 
large instanton number k, one runs into intractable quadratic equations, but 
in the large N limit, for any given k, there is no such problem.) 
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The only work I know using the interpretation of the Yang-Mills equations 
via light-like integrability to actually describe some solutions of the equations 
was by Manin [12, pp. 253-267]. His construction (involving a generalization 
of  the ADHM construction) gives non-vacuous results for SU (N) gauge groups 
with N > 66. (See p. 266 for the statement of this restriction.) The restriction 
to N _> 66 may make the construction look exotic, but that is the wrong 
attitude. The question that we should be asking is precisely whether some 
construction, which might well turn on only for sufficiently large N, could 
give a universal description of the Yang-Mills solutions for N ~ m. 

One way to understand how the twistor construction of the self-dual Yang- 
Mills equations exhibits their integrability is the following. Consider a line 
X ~ CP I in twistor space (corresponding to a point in Minkowski space). X 
can be covered with two very simple open sets O1 and O2 (for instance, two 
copies of  a disc or of  C), and so a holomorphic vector bundle on X can be 
described by giving a single transition function f on O1 nO2, which is required 
only to be invertible. Extending this a bit, a holomorphic vector bundle on a 
small neighborhood of X in twistor space can likewise be described by a single 
transition function f .  This exhibits the integrability of the self-dual Yang- 
Mills equations: vector bundles on twistor space and therefore the solutions 
of  the self-dual equations are constructed from the freely specifiable function 
f .  Technically, the reason that the relation of the full-fledged Yang-Mills 
equations to vector bundles on the space of thickened null lines does not lead 
to integrability is that in this case CP I is replaced by CW x CP ~. CW x CP t 
cannot be covered with two elementary open sets, so a holomorphic vector 
bundle on CP 1 x CW is not naturally described in terms of a single transition 
function, but requires a collection of transition functions f j, which must obey 
an awkward cocycle relation. To exhibit integrability of the N = oo Yang- 
Mills equations, one might try to imitate Ward's work on the Nahm equation 
and find some simplification in the description of holomorphic vector bundles 
on (neighborhoods of) CP l x CP x, for appropriate infinite dimensional gauge 
groups. In trying to do this, one does not necessarily want to naively describe 
the bundle by giving a collection of transition functions. Indeed, much of  
the power of  the twistor transform comes from the fact that there are many 
possible ways of  describing holomorphic bundles. 

Some simpler analogs 

It could be that at present four dimensional Yang-Mills theory is too difficult 
and that we should concentrate on simpler cases. The most obvious simplifica- 
tions are achieved by reducing the number of dimensions. In two dimensions, 
non-abelian gauge theories are "trivial" in the absence of matter, in the sense 
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that the classical field equations reduce to the statement that D,F = 0 (the 
curvature is covariantly constant). The solutions of this equation are trivially 
classified locally and are really interesting only globally. In fact, globally, the 
classical Yang-Mills problem in two dimensions has been used to understand 
the topology of the moduli space of  flat connections (or holomorphic vector 
bundles) on a surface [ 13]. The corresponding quantum field theory, which is 
similar in flavor to topological field theory, is again mainly of global interest. 
It is "trivial" enough that it can be understood pretty well for any gauge group. 
It leads to formulas for the volumes of moduli space of  flat connections [ 14 ]. 

A more "physical" problem, much more similar to four dimensional QCD, 
arises if we couple matter fields, say fermions in the N dimensional represen- 
tation of  S U ( N ) ,  to two dimensional quantum gauge fields. In this case, we 
get a theory which is quite intractable for a finite dimensional gauge group, 
but beautifully soluble in the limit of N --, oc (as 't Hooft showed in the 
original work). In fact, after so many years this is still the nicest example in 
which the large N limit has been used to shed light on dynamics of quantum 
gauge theories. 

A big jump in difficulty comes if we go to three spacetime dimensions. 
Our question about whether integrability arises for N --, oo could well be 
raised here. No more is known about integrability of  the three dimensional 
classical Yang-Mills equations than about the four dimensional case. At the 
quantum level, the fact that three dimensional Yang-Mills theory is super- 
renormalizable (rather than asymptotically free, as in four dimensions) appears 
to be a big potential simplification, but in practice it has not been exploited 
very successfully. Even in the large N limit, three dimensional quantum Yang- 
Mills theory is as little understood as the four dimensional case. Twistorians 
might want to begin there. 

Hamiltonians and Lagrangians 

In broad terms, there are two approaches to understanding a quantum field 
theory - the Hamiltonian approach and the Lagrangian approach. 

In the Hamiltonian approach, one considers a classical phase space 7 9, 
which can be described covariantly as the space of  all classical solutions of  the 
theory under study, up to gauge transformation. 79 carries a natural symplectic 
structure. One must quantize it, construct the Hamiltonian operator, and 
attempt to diagonalize it approximately. A twistor construction exhibiting 
integrability of  the N --, oo Yang-Mills equations in three or four dimensions 
would presumably give a new description of 79; if the symplectic structure and 
the classical Hamiltonian were visible in this language, one could aim to use 
this as the starting point for quantization. 
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In the Lagrangian approach, one considers the space W of all classical fields 
in spacetime (not necessarily classical solutions), up to gauge transformation. 
In Yang-Mills theory, W has a natural Riemannian metric, and formally this 
gives a Riemannian measure d/z. One introduces a natural function on this 
space, the Lagrangian L, and one aims to carry out the Feynman path integral 
over W: 

Z = /,~,dg e -L.  (1) 

To carry out such a program in twistor theory, one would need a twistorial 
description of W in which the function L would be visible. For instance, let M 
be a (complexified) spacetime of any dimension. Let Q be the space of complex 
null lines (ordinary ones, not thickened ones; we could also consider all lines 
rather than null ones). Then by imitating the original twistor transform, gauge 
fields on M are in one to one correspondence with holomorphic vector bundles 
on Q obeying certain conditions. If one could describe the standard Yang-Mills 
Lagrangian 

P 

= . / u & x  T r F A , F  (2) L 

in that language - and I do not know any reasonably attractive way to do so 
- then one could try to give a twistorial formulation of the Feynman path 
integral (I) .  Of course, one would expect it to be intractable except possible 
for N ---, oc. 

It is interesting to note that if M is four dimensional and N is a three 
dimensional Cauchy hypersurface, then morally speaking instantons on M are 
the same as gauge fields on N. (A gauge field on N provides initial data 
for an instanton on M.) Instantons on M can be described by the ADHM 
construction, which was originally formulated globally and has its greatest 
power in that context. However, the ADHM construction can also be described 
locally [15]; this is relevant to the Nahm construction of monopoles [16]. 
The ADHM construction of instantons on M could possibly be interpreted 
as a description of the space W of gauge fields on N and so used as a 
starting point for discussing the Feynman path integral of three dimensional 
Yang-Mills theory. It is important here to use a local version of the ADHM 
construction so that one is not limited to particular initial data on N that lead 
to global instantons on M. To proceed down this road, one would again need 
to discover a reasonable formula in the ADHM variables for the Lagrangian 
functional on W. 
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